Minimum Bias Design for Polynomial Regression
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملA Unified Approach for Design of Lp Polynomial Algorithms
By summarizing Khachiyan's algorithm and Karmarkar's algorithm forlinear program (LP) a unified methodology for the design of polynomial-time algorithms for LP is presented in this paper. A key concept is the so-called extended binary search (EBS) algorithm introduced by the author. It is used as a unified model to analyze the complexities of the existing modem LP algorithms and possibly, help ...
متن کاملInducing Polynomial Equations for Regression
Regression methods aim at inducing models of numeric data. While most state-of-the-art machine learning methods for regression focus on inducing piecewise regression models (regression and model trees), we investigate the predictive performance of regression models based on polynomial equations. We present Ciper, an efficient method for inducing polynomial equations and empirically evaluate its...
متن کاملEmpirical-bias bandwidths for local polynomial nonparametric regression and density estimation
A data-based local bandwidth selector is proposed for nonparametric regression by local tting of polynomials. The estimator, called the empirical-bias bandwidth selector (EBBS), is rather simple and easily allows multivariate predictor variables and estimation of any order derivative of the regression function. EBBS minimizes an estimate of mean square error consisting of a squared bias term pl...
متن کاملRobust designs for polynomial regression by maximizing a minimum of D- and D1-efficiencies
In the common polynomial regression of degree m we determine the design which max imizes the minimum of the D e ciency in the model of degree m and the D e ciencies in the models of degree m j m k j k given The resulting designs allow an e cient estimation of the parameters in the chosen regression and have reasonable e ciencies for checking the goodness of t of the assumed model of degree m by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2015
ISSN: 1225-066X
DOI: 10.5351/kjas.2015.28.6.1227